Biochemical mechanism of oxidative damage by redox-cycling drugs.
نویسندگان
چکیده
Biochemical mechanisms of production of redox intermediates of redox-cycling drugs include: photochemical events, either photoionization process or electron transfer from photoexcited states; electron exchange of reduced form of a drug with the oxy state of oxygen-binding hemoproteins; oxidation by catalytic metal centers (oxidases, peroxidases, oxygenases) of the reduced forms of drugs; or electron transfer to the oxidized form of a drug from activated intracellular electron transfer chain (mitochondria, microsomes, etc.). Further reaction of these drug free radicals can lead to oxidative damage by either direct attack of biological macromolecules or via oxygen reduction, giving O2-, H2O2, and OH. The reaction pathway depends on the presence of metal ions, natural scavengers, enzymes that control relative concentrations of reactive species, and availability of oxygen in the environment.
منابع مشابه
Lysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملOxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin.
The quinonoid anthracycline, doxorubicin (Adriamycin) is a potent anti-neoplastic agent whose clinical use is limited by severe cardiotoxicity. Mitochondrial damage is a major component of this cardiotoxicity, and rival oxidative and non-oxidative mechanisms for inactivation of the electron transport chain have been proposed. Using bovine heart submitochondrial preparations (SMP) we have now fo...
متن کاملp38(MAPK)/p53 signalling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration.
BH4 (tetrahydrobiopterin) induces neuronal demise via production of ROS (reactive oxygen species). In the present study we investigated the mechanisms of its toxicity and the redox signalling events responsible for the apoptotic commitment in SH-SY5Y neuroblastoma cells and in mouse primary cortical neurons. We identified in p38(MAPK)/p53 a BH4-responsive pro-apoptotic signalling axis, as demon...
متن کاملOxidoreduction of protein thiols in redox regulation.
Protein cysteines can undergo various forms of oxidation, some of them reversible (disulphide formation, glutathionylation and S-nitrosylation). While in the past these were viewed as protein damage in the context of oxidative stress, there is growing interest in oxidoreduction of protein thiols/disulphides as a regulatory mechanism. This review discusses the evolution of the concept of redox r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 64 شماره
صفحات -
تاریخ انتشار 1985